

Für maximale Produktivität

Unbehandelte Druckluft kann durch Staub, Wasser und Öl verunreinigt werden. Daher ist die Filterung eine wichtige Komponente Ihres Druckluftsystems. Atlas Copco hat Filterlösungen entwickelt, die Ihre druckluftbetriebenen Werkzeuge, Ihre Prozesse und Ihre Endprodukte schützen. Zu unserem umfassenden Angebot gehören unterschiedliche Filtertypen für unterschiedliche Coronavirus Reinheitsklassen, um Ihre speziellen Öltröpfchen Anforderungen zu erfüllen. Rauchpartikel Menschliches Haar Staubpartikel Atlas Copco-Filter entfernen selbst die kleinsten Verunreinigungen, wie Sand, Salz- und Zuckerkörner, Kohlenstoff-, Rost-, Zement-, Farb- und Asbestpartikel sowie Salzkorn Bakterien und Viren. Feiner Sand

Unübertroffen hohe Filterqualität

Inhouse-Erfahrung

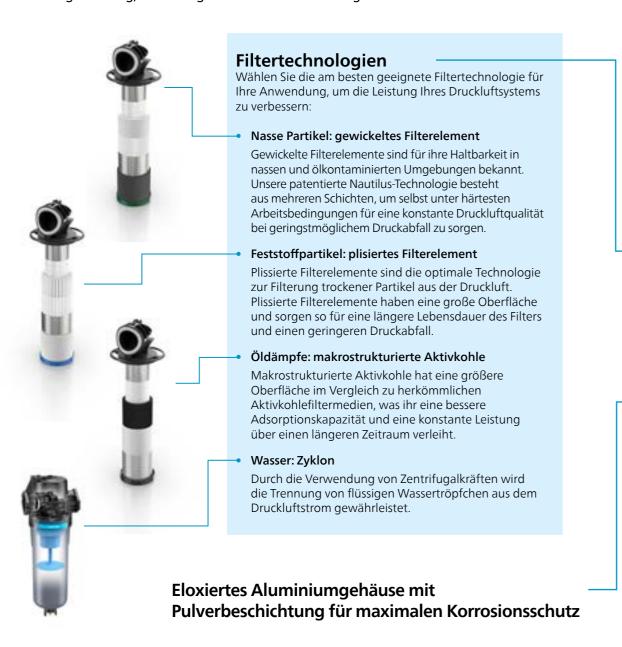
Aufgrund der hohen Bedeutung der Filtration arbeitet das engagierte Entwicklungsteam von Atlas Copco eng mit Universitäten, Aufsichtsbehörden und Lieferanten hochwertiger Filtermaterialien zusammen. Unsere Wissenschaftler und Ingenieure sind daher immer über die neuesten Entwicklungen und Innovationen in der Branche informiert. Jeder Schritt des Engineering-Prozesses wird akribisch ausgeführt, von der Grundlagenforschung über das Prototyp-Design bis hin zur End-of-Life-Analyse.

Um höchste Leistung und Zuverlässigkeit zu gewährleisten, werden alle Filter von Atlas Copco strengen internen und externen Zertifizierungen und Qualitätskontrollen unterzogen. Alle Zertifizierungen werden in unseren internen Prüfeinrichtungen durchgeführt, einschließlich der durch unabhängige Parteien bestätigten Tests.

Durch unsere langjährige Erfahrung sind wir in der Lage, Filter gemäß allen relevanten Normen und unter realen Bedingungen zu testen. Mit jeder neuen Entwicklung in der Filterbranche wächst unsere Kompetenz.

In Europa entwickelt und hergestellt

Unser gesamtes Filtersortiment wird in den europäischen Werken von Atlas Copco unter Verwendung modernster Produktionslinien und Qualitätskontrollen entwickelt und hergestellt. Dank dieser geografischen Nähe können wir F&E, Engineering, Produktion und Tests eng zusammenhalten und die Zusammenarbeit optimieren.


Die Filter von Atlas Copco sind gemäß den folgenden ISO-Normen zertifiziert:

- ISO 8573-1:2010: Druckluft Verunreinigungen und Reinheitsklassen
- ISO 8573-2:2018: Druckluft Testmethoden für den Gehalt an Öl-Aerosolen
- ISO 8573-4:2019: Druckluft Testmethoden für Partikel
- ISO 8573-5: 2001: Druckluft Testmethoden für den Öldampf- und organischen Lösungsmittelgehalt
- ISO 12500-1:2007: Filter für Druckluft Testmethoden Öl-Aerosole
- ISO 12500-2:2007: Filter für Druckluft Testmethoden Öldämpfe
- ISO 12500-3:2009: Filter für Druckluft Testmethoden Partikel

2 – Druckluftfilter von Atlas Copco — Dr

Fortschrittliche Filtertechnologie

Die Filtertechnologie ist wichtig, wenn Sie eine konstante Druckluftqualität bei geringem Wartungsaufwand benötigen. Im Laufe der Jahre hat Atlas Copco zahlreiche innovative Filtertypen, -designs, -prozesse und -medien entwickelt, die für erstklassige Leistung, Zuverlässigkeit und Lebensdauer sorgen.

Kappe an der Unterseite des Elements (UD+, PD+ und DD+)

Ein patentiertes Drainagesystem erleichtert das Entfernen von Öl aus dem Filterelement, wodurch das "Nassband" an der Unterseite des Elements entfällt, das die Leistung und die Lebensdauer des Filters beeinträchtigen kann.

Wartungsanzeige

Um eine konstante Druckluftqualität zu gewährleisten, ermöglicht die Wartungsanzeige eine einfache Überprüfung der Betriebsstunden, des Differenzdrucks und des Wartungsstatus des Filters. Sie kann sogar eine Remote-Warnung versenden.

Kappe an der Oberseite des Elements

Die obere Kappe führt den Druckluftstrom optimal in die Patrone und zum Auslass, um den Druckabfall und den Gesamtenergieverbrauch des Filters zu reduzieren.

inPASS[™]-Bypass

Der neuartige integrierte Bypass von Atlas Copco kann genutzt werden, um die Druckluft während der Filterwartung umzuleiten und so einen ununterbrochenen Druckluftstrom gewährleisten. Dies ist eine revolutionäre Innovation, die

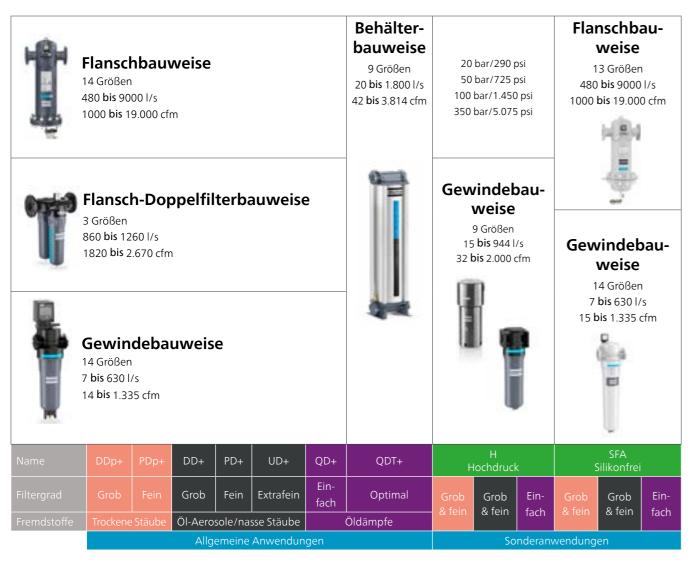
Ihnen große Gewinne und betriebliche Einsparungen ermöglicht:

- Wartung Ihrer Filter, auch während der Arbeitszeiten
- Gesicherter Druckluftstrom f
 ür Ihre Produktion während der Wartung
- Ihre Druckluftanlage muss während der Wartung nicht abgeschaltet werden
- Keine Kosten für einen externen Rohrleitungs-Bypass
- Verringerung des Risikos von Leckagen und Einsparung von Energiekosten

Robuste und langlebige Edelstahlzylinder

Farblich unterschiedliche Endkappen zur einfachen Erkennung des Filtergrads

Wartungsfreundlicher Kondensatableiter


Unser Antihaft-Kondensatableiter entsorgt automatisch das gesamte aufgefangene Öl und Wasser. Um Ihnen Zeit und Geld zu sparen, können unsere Ableiter einfach gewartet werden, ohne die Filterbehälter ausbauen zu müssen. Der Ablass mit Gewindeanschluss am Behälter erleichtert außerdem den Austausch des Kondensatableiters mit einem externen manuellen oder automatischen Ableiter.

4 – Druckluftfilter von Atlas Copco — Druckluftfilter von Atlas Copco — Druckluftfilter von Atlas Copco – Dr

Vollständige Filtration

Schmutz, Wasser und Öl sind für die Filter von Atlas Copco kein Problem. Sie wurden entwickelt, um eine oder mehrere der folgenden Verunreinigungen zu entfernen:

- SCHMUTZ: Staub, Feststoffpartikel, Rostpartikel, Mikroorganismen
- WASSER: kondensiertes flüssiges Wasser, Wasser-Aerosole, säurehaltiges Kondensat
- ÖL: flüssiges Öl, Öl-Aerosole, Kohlenwasserstoffdampf

Trockene Stäube Mikroorganismen

n Öl-Aerosole

e Nasse Stäu

dämpfe

Wassertröpfchen

Eine Lösung für jede Anwendung

Je nach Einsatzort und Anwendung können unterschiedliche Druckluftreinheitsgrade erforderlich sein. Die folgende Tabelle zeigt die unterschiedlichen Druckluftreinheitsklassen gemäß ISO 8573-1:2010 und die Filterund Trocknerkombinationen von Atlas Copco, die diese Klassen erfüllen.

ISO 8573-1:2010	Feststof	fpartikel		Öl (Aerosole, Flüssigkeit, Dampf)					
Klasse	Nasse Betriebsbedingungen	Trockene Betriebsbedingungen	Wasser						
0	SM	Γ-G*	Nach Kundenwunsch**	Ölfrei verdichtender Kompressor					
1	DD+ und PD+	DDp+ und PDp+	Trockenmitteltrockner	DD+ und PD+ & QD+/QDT					
ı	UD+	DDp+ und PDp+	Hockenmitteitrockner	UD+ & QD+/QDT					
2	DD+	DDp+	Adsorptionstrockner, Drehtrommeltrockner	DD+ und PD+					
2	DD+		Adsorptionstrockner, Dientrommetrockner	UD+					
3	DD+		Adsorptionstrockner, Membrantrockner, Drehtrommeltrockner	DD+					
4	DD+		Membrantrockner, Kältemitteltrockner	DD+					
5	DD+	DDp+	Membrantrockner, Kältemitteltrockner	- -					
6	-	-	Membrantrockner, Kältemitteltrockner	-					

Druckluftreinheit entspricht ISO 8573-1:2010 [Klasse 1:-:2]

Typische Installationsbeispiele

Kompressor - UD+

В	Kompressor - UD+ - Kältemitteltrockner	Druckluftreinheit entspricht ISO 8573-1:2010 [Klasse 1:4:2]*
С	Kompressor - UD+ - Kältemitteltrockner - QDT - DDp+	Druckluftreinheit entspricht ISO 8573-1:2010 [Klasse 2:4:1]
D	Kompressor - UD+ - Adsorptionstrockner - DDp+	Druckluftreinheit entspricht ISO 8573-1:2010 [Klasse 2:2:2]
E	Kompressor - UD+ - Adsorptionstrockner - QDT - DDp+ - PDp+	Druckluftreinheit entspricht ISO 8573-1:2010 [Klasse 1:2:1]
	A B	C 7 5 5
	D P 4	E 56
 Komp UD+-F 		

*Die Partikelklasse 1 wird direkt hinter dem UD+ erreicht. Da die Druckluft durch die nachfolgenden Rohre und Behälter verunreinigt werden kann, sollten die Partikelfilte DDp+ und PDp+ direkt vor dem Anwendungssystem installiert werden, damit die Partikelklasse 1 am Einsatzort gewährleistet ist.

Der Kompressor sollte mit einem Flüssigkeitsabscheidesystem wie z.B. einem Nachkühler mit Ableiter oder einem Wasserabscheider (WSD) ausgestattet sein. Wenn dies nicht der Fall ist, installieren Sie einen Wasserabscheider vor dem Koaleszenzfilter. Bei problematischen Anwendungen sollten zusätzliche Druckluftaufbereitungsprodukte am Verwendungsort installiert werden, um Verunreinigungen und Kondensation aus den Rohrleitungen zu entfernen.

6 – Druckluftfilter von Atlas Copco — Druckluftfilter von Atlas Copco – Druckluftfilter von Atlas Copco – Druckluftfilter von Druckluftfilter von Atlas Copco – Druckluftfilter

^{*} Weitere Informationen finden Sie in der Broschüre zur Prozessgasfiltration von Atlas Copco.

^{**} Bitte wenden Sie sich an den zuständigen Vertriebsmitarbeiter bei Atlas Copco.

DD+/PD+/UD+-Serie

Ölkoaleszenzfilter mit patentierter Nautilus-Technologie

Die Kompressorelementschmierung und Ihre Kompressoranlage selbst können Öl-Aerosole und nassen Staub in Ihrer Druckluftanlage freisetzen. DD+-, PD+- und UD+-Filter entfernen diese Verunreinigungen effizient und schützen so Ihre Geräte und Prozesse. Diese innovativen Filterlösungen wurden so konzipiert, dass sie kostengünstig beste Druckluftqualität bereitstellen und damit die steigende Nachfrage nach hoher Qualität erfüllen.

Ihre Vorteile:

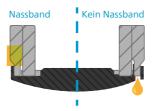
- Maximale Öl-Aerosol-, Staub- und Wassertröpfchenfilterung und -ableitung
 Die hocheffiziente Glasfaser-Nautilus-Technologie sorgt für einen geringen Druckabfall.
- Patentierte Ableitungstechnologie

 Eine raue Schicht/Barriere mit
 dreidimensionaler Struktur sorgt für eine effiziente Ölableitung und verhindert das erneute Eindringen von Öltröpfchen in den Druckluftstrom.
- **Niedrige Betriebskosten** Die optimale Konstruktion und Filtertechnologie lässt nur geringe Druckverluste zu.
- Kostensparende Wartung Das gerippte Gehäuse ermöglicht ein einfaches Entfernen der Filterschale. Das Einsteckelement und der Ableitungsanschluss wurden extra für einen mühelosen Austausch entwickelt. Die Wartungsanzeige zeigt (vorbeugende) Wartungsalarme an.

Zertifizierung

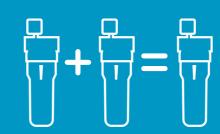
- ISO 8573-2:2018
- ISO 12500-1:2007

Drei patentierte Innovationen



1. Nautilus-Technologie für Energieeinsparungen

Die Nautilus-Technologie für gewickelte Filterelemente wurde speziell zur Verbesserung des Koaleszenzprozesses bei Öl-Aerosolen entwickelt. Das sorgt für optimale Filterergebnisse bei einem geringeren Druckabfall und mindert Ihre Betriebskosten.


2. Hervorragende Ableitungstechnologie für eine starke Leistung und eine lange Lebensdauer

Eine einzigartige raue Schicht/Barriere mit dreidimensionaler Struktur sorgt für eine effiziente Ölableitung und verhindert das erneute Eindringen von Öltröpfchen in den Druckluftstrom. Dieser Aufbau ermöglicht eine Lebensdauer von 8.000 Stunden.

3. Verbesserte Ableitungskanäle für reine Druckluft

Der untere Deckel des Filters ist so ausgelegt, dass die Ableitungsrate des Öls aus der Barriere steigt, indem der Kontakt zwischen der Barriere und den Ableitungswegen optimiert wird. Dadurch wird sichergestellt, dass sich in der Barriere kein Nassband bildet und das Risiko eines Wiedereintrags erheblich verringert wird, was zu saubererer Druckluft führt.

Das 2-in-1-Konzept des UD+ spart Geld und Platz

Der UD+ kombiniert zwei Filtrationsschritte (DD+ und PD+) und verfügt über eine einzigartige Technologie, die die Qualitätsanforderungen verschiedener Anwendungen erfüllt und hervorragende Energieeinsparungen ermöglicht. Der UD+-Filter liefert die gleiche Druckluftreinheit wie ein DD+-PD+-Filterkombination bei einem geringeren Druckabfall.

- · So sparen Sie bis zu 50 % an Platz: Das 2-in-1-Konzept ist ideal für Anwendungen mit wenig Platz, wodurch der ökologische Fußabdruck, die Systemkomplexität und der Platzbedarf verringert werden.
- Kostensparend: Durch den Einbau von UD+-Filtern können im Vergleich zu herkömmlichen Filtern erhebliche Kosteneinsparungen bei Einbau und Wartung erzielt werden.

Leistung

	DD+	PD+	UD+
Fremdstoffe		Öl-Aerosole/nasse Stäube	
Filtrationstechnologie		Gewickelt	
Testmethode		ISO 8573-2:2018, ISO 12500-1:200	7
Maximaler Restölgehalt (mg/m³)*	0,08*	0,008*	0,001
ISO-Klasse 8573-1	[2:-:3]	[1:-:2]	[1:-:2]
Durchschnittlicher Druckabfall, nass (mbar)	119	132	220
Elementwechsel	Nach 8.	000 Betriebsstunden oder nach eir	nem Jahr
Vorzuschalten	Wasserabscheidung	Wasserabscheidung und DD+	Wasserabscheidung

^{*} Ölkonzentration am Einlass = 10 mg/m³. Öl = Öl-Aerosol und -Flüssigkeit

8 – Druckluftfilter von Atlas Copco — Druckluftfilter von Atlas Copco — Druckluftfilter von Atlas Copco – Dr

DDp+/PDp+-Serie

Optimale Trockenstaubfiltration

DDp+- und PDp+-Filter verhindern effizient, dass Staub, Korrosionspartikel, Mikroorganismen, Schmutz und Adsorptionsmaterial in Ihren Druckluftstrom gelangen. Diese innovativen Filtrationslösungen sind so konzipiert, dass sie kosteneffizient die beste Druckluftreinheit liefern und die strengen Qualitätsanforderungen von heute erfüllen.

Ihre Vorteile:

 Maximale Entfernung von Schmutz, festen Partikeln, Mikroorganismen und Rostpartikeln

Hocheffiziente Medien aus gefalteter Glasfaser mit grobem Vorfiltervlies sorgen für eine hohe Staubhalteleistung.

- Minimale Betriebskosten Die optimale Faltenkonstruktion und Filtertechnologie sorgen für geringe Druckverluste.
- Kostensparende Wartung Das gerippte Gehäuse ermöglicht ein einfaches Entfernen der Filterschale. Das Einsteckelement und der Ableitungsanschluss wurden extra für einen mühelosen Austausch entwickelt. Die Wartungsanzeige zeigt (vorbeugende) Wartungsalarme an.

Leistung

	DDp+	PDp+						
Fremdstoffe	Trock	ene Stäube						
Filtrationstechnologie	G	Gefaltet						
Testmethode	ISO 8573-4:2001, ISO 12500-3:2009							
Filterwirkungsgrad bei Feststoffen (% bei MPPS)	99,92	99,98						
ISO-Klasse 8573-1	[2:-:3]	[1:-:2]						
Durchschnittlicher Druckabfall, trocken (mbar)	50	55						
Elementwechsel	Nach 8.000 Betriebsstunden, nach e	einem Jahr bzw. bei 350 mbar Druckabfall						
Vorzuschalten	Trockner	Trockner und DDp+						

Zertifizierung

- ISO 8573-4:2019
- ISO 12500-3:2009

QD+-Serie

Hochleistungs-Öldampffilter

QD+-Filter reduzieren effizient Kohlenwasserstoffe, Gerüche und Öldämpfe in Ihrer Druckluft, um Ihre Investitionen, Geräte und Prozesse zu schützen. Die makrostrukturierte Aktivkohle reduziert den Restölgehalt durch Adsorption auf weniger als 0,003 mg/m³. Der Druckabfall ist dabei nur gering und bleibt während der gesamten Lebensdauer des Filters konstant.

Ihre Vorteile:

- Maximale Öldampfentfernung
 Die makrostrukturierte Aktivkohle wurde
 speziell entwickelt, um Öldämpfe mit
 minimaler Staubfreisetzung effizient und
 vollständig aus der Druckluft zu entfernen.
- Minimale Betriebskosten Geringe Druckverluste durch optimale Durchflussauslegung.
- Kostengünstige Wartung Das gerippte Gehäuse ermöglicht ein einfaches Entfernen der Filterschale. Das Einsteckelement und der Ableitungsanschluss wurden extra für einen mühelosen Austausch entwickelt. Die Wartungsanzeige zeigt (vorbeugende) Wartungsalarme an.

Leistung

	QD+
Fremdstoffe	Öldämpfe
Filtrationstechnologie	Makrostrukturierte Aktivkohle
Testmethode	ISO 8573-5:2001
Maximaler Restölgehalt (mg/m³)*	0,003*
ISO-Klasse 8573-1	[+:1]
Durchschnittlicher Druckabfall, trocken (mbar)	75
Elementwechsel	Nach 2.000 Betriebsstunden oder nach einem Jahr
Vorzuschalten	Wasserabscheidung UD+ oder DD+/PD+ Trockner
Mehrstufenfilter UD+–QD+	[2:-:1]

^{*} In einem typischen Aufbau mit Kältemitteltrockner und UD+-Filter

10 – Druckluftfilter von Atlas Copco — Druckluftfilter von Atlas Copco — Druckluftfilter von Atlas Copco – D

Optionen DD+/PD+/UD+/DDp+/PDp+/QD+

- Intelligente Anzeige
- Externer Verkabelungssatz für intelligente Anzeige
- Potentialfreier Alarm für Messgerät
- Filteranschlusssatz
- Wandmontagesatz
- Mechanischer Kondensatableiter WD 80
- Verlustfreier elektronischer Kondensatableiter (IWD)

			DD+/PD+/UD+			DDp+/PDp+/QD+	
		Standard mit Gewinde	InPASS mit Gewinde	Geflanscht	Standard mit Gewinde	InPASS mit Gewinde	Geflanscht
Standard							
	Druckentlastungsventil (für DDp+/PDp+/QD+)	х	х	x	х	х	х
Ablass	Kondensatableiter mit Schwimmer (für DD+/PD+/UD+)	x	х				
	Elektronischer Kondensatableiter EWD (für DD+/PD+/UD+)			x			
	Popup-Anzeiger	Größe 7–25			Größe 7–25		
Anzeiger (ohne QD+)	Messinstrument	Größe >25			Größe >25		
,	Intelligente Anzeige		х	х		х	х
Bypass			x			×	
Optionen	Intelligente Anzeige	×			×		
	Externer Verkabelungssatz für	x	X	x	x	x	х
	intelligente Anzeige Potentialfreier Alarm für Messgerät	Größe >25			Größe >25		
	Filteranschlusssatz	x	x		x	x	
	Wandmontagesatz	х	х		х	х	
	Mechanischer Kondensatableiter WD 80			x			
	Elektronischer Kondensatableiter EWD	х	х				

Korrekturfaktoren

Bei Arbeiten mit anderen Drücken als dem Nenndruck wird der tatsächliche Volumenstrom durch Multiplikation des Korrekturfaktors mit der AML-Nennkapazität errechnet. Die errechnete tatsächliche Durchflusskapazität entspricht dem von AML angegebenen Druckabfall.

Betriebsdruck in bar(g)	1	2	3	4	5	6	7	8	10	12	14	16
Korrekturfaktor	0,38	0,53	0,65	0,75	0,83	0,92	1	1,06	1,20	1,31	1,41	1,50

Größen und Abmessungen DD+/PD+/UD+/DDp+/PDp+/QD+

Filtergröße mit oder ohne inPASS™		nka- zität	Referen	zdruck	Maxima	aldruck	An	schlüsse			Abme	ssungen				patro- echsel	Gew	vicht
	<u> </u>	,					<u> </u>	C NOT		Α	'	В	C	:	'	D		
	I/s	cfm	bar(e)	psig	bar(e)	psig	G	NPT	mm	Zoll	mm	Zoll	mm	Zoll	mm	Zoll	kg	lbs
7+	7	15	7	102	16	232	G 1/2	NPT 1/2	106	4,17	90	3,54	362,6	14,3	90	3,54	1,18	2,60
15+	15	32	7	102	16	232	G 1/2	NPT 1/2	106	4,17	90	3,54	362,6	14,3	90	3,54	1,24	2,73
25+	25	53	7	102	16	232	G 1/2	NPT 1/2	106	4,17	90	3,54	415,1	16,3	90,5	3,56	1,45	3,20
45+	45	95	7	102	16	232	G 3/4	NPT 3/4	135	5,31	110	4,33	442,6	17,4	110	4,33	2,35	5,18
75+	75	159	7	102	16	232	G 1	NPT 1	135	5,31	110	4,33	527,6	20,8	110	4,33	2,8	6,17
110+	110	233	7	102	16	232	G 1 1/2	NPT 1 1/2	175	6,89	143	5,63	559,1	22,0	130,5	5,14	5,4	11,91
145+	145	307	7	102	16	232	G 1 1/2	NPT 1 1/2	175	6,89	143	5,63	629,1	24,8	130,5	5,14	5,93	13,08
180+	180	381	7	102	16	232	G 1 1/2	NPT 1 1/2	175	6,89	143	5,63	699,1	27,5	130,5	5,14	6,45	14,22
240+	240	509	7	102	16	232	G 2	NPT 2	222	8,74	171	6,73	729,6	28,7	175	6,89	9,54	21,04
200	200	626	-	100	4.0	222	G 2	NPT 2	222	0.74	474	670	022.6	22.4	475	6.00	10,71	23,62
300+	300	636	7	102	16	232	G 2 1/2	NPT 2 1/2	222	8,74	171	6,73	822,6	32,4	175	6,89	10,43	23,00
													he "C" ve				3en 7–25	um
Mit inPASS™									51 mn	n (2") un	d bei de	n Größei	n 45–300	um 10 m	nm (0,4")			
380+	380	805	7	102	14	203	G 3	NPT 3	250	9.84	191	7,52	927,1	36,5	200,5	7.89	13.6	29.99
425+	425	901	7	102	14	203	G 3	NPT 3	250	9,84	191	7,52	1043,1	41,1	200,5	7,89	14,95	32,96
510+	630	1081	7	102	14	203	G 3	NPT 3	250	9,84	191	7,52	1281,1	50,4	200,5	7,89	19,6	43,22
Ohne inPASS™	030	1001	,	102	14	203	03	WIIS	230	3,04	151	1,52	1201,1	30,4	200,3	7,03	13,0	43,22
360+	360	763	7	102	16	232	G 2 1/2	NPT 2 1/2	222	8,74	171	6,73	812,7	32,0	175	6,89	10,2	22,49
430+	430	911	7	102	16	232	G 3	NPT 3	250	9,84	191	7,52	917,2	36,1	200,5	7,89	13,98	30,83
525+	525	1112	7	102	16	232	G 3	NPT 3	250	9,84	191	7,52	1033,2	40,7	200,5	7,89	15,32	33,78
630+	630	1335	7	102	16	232	G 3	NPT 3	250	9,84	191	7,52	1271,2	50,0	200,5	7,89	19,24	42,42
Geflanscht							Flansch	anschluss										
480+	480	1017	7	102	16	232		DN 80	370	15	316	12	1295*	51*	1375	54	76	168
630+	630	1335	7	102	16	232		DN 80	370	15	316	12	1295*	51*	1375	54	78	172
860+T	860	1822	7	102	16	232		ON 100	550	22	418	17	798	31	230	9	38	84
970+	970	2055	7	102	16	232		ON 100	510	20	451	18	1360*	54*	1500	59	141	311
1050+T	1050	2.225	7	102	16	232	[ON 100	550	22	418	17	914	36	230	9	41	90
1260+	1260	2670	7	102	16	232	[ON 100	510	20	451	18	1360*	54*	1500	59	143	315
1260+T	1260	2670	7	102	16	232	[ON 100	550	22	418	17	1152	45	230	9	49	107
1600+	1600	3390	7	102	16	232		ON 150	620	24	506	20	1480*	58*	1560	61	210	463
2100+	2100	4450	7	102	16	232	[ON 150	640	25	541	21	1555*	61*	1640	65	176	388
2500+	2500	5297	7	102	16	232	[ON 150	640	25	541	21	1555*	61*	1640	65	178	392
3000+	3000	6357	7	102	16	232		ON 200	820	32	701	28	1745*	69*	1710	67	420	926
3500+	3500	7416	7	102	16	232		DN 200		32	701	28	1745*	69*	1710	67	424	935
4000+	4000	8476	7	102	16	232	[ON 200	820	32	701	28	1745*	69*	1710	67	428	944
5000+	5000	10594	7	102	16	232	[ON 200	820	32	701	28	1745*	69*	1710	67	432	952
6000+	6000	12713	7	102	16	232		ON 250	920	36	815	32	2085*	82*	1625	64	671	1479
7000+	7000	14832	7	102	16	232		ON 250	920	36	815	32	2085*	82*	1625	64	679	1497

^{* +60} mm/2,36 Zoll für Einheiten mit elektronischem Kondensatableiter und +70 mm/2,76 Zoll für mechanischen Kondensatableiter mit Schwimmer

DN 300

16 232

Temperaturkorrekturfaktoren QD+

9000 19070 7 102 16 232

Bei höheren Temperaturen verdampft mehr Kompressoröl. Wenn die tatsächliche Arbeitstemperatur am Lufteinlass vom Referenzwert abweicht, muss die Filterkapazität durch die entsprechenden Korrekturfaktoren dividiert werden, um die richtige Leistung zu erhalten.

1040 41 930 37 2070*

Einlasstemperatur °C	20	25	30	35	40	45	50	55	60
Einlasstemperatur °F	68	77	96	95	104	113	122	131	140
Korrekturfaktor ölfrei	1	1	1	1	1	1	1	1	1
Korrekturfaktor ölgeschmiert	1	1	1	1,2	1,5	1,7	2,1	2,4	2,6

Einige Umwelt- oder Prozessaspekte können eine höhere Menge an Kohlenwasserstoffen oder anderen flüchtigen organischen Verbindungen in der Druckluft verursachen. Bitte wenden Sie sich an Atlas Copco, wenn höhere Konzentrationen zu erwarten sind.

12 – Druckluftfilter von Atlas Copco — Druckluftfilter von Atlas Copco – Druckluftfilter von Atlas Copco – 13

QDT-Serie

Aktivkohleadsorber für die optimale Öldampfabscheidung

Der hocheffiziente Aktivkohleadsorber ist in der Lage, Kohlenwasserstoffe, Gerüche und Dämpfe aus der Druckluft zu entfernen. Die Aktivkohle reduziert durch Adsorption den Restölgehalt auf unter 0,003 mg/m3. Der Druckabfall ist dabei nur gering und bleibt während der gesamten Lebensdauer des Filters konstant.

Ihre Vorteile:

- Maximale Öldampfentfernung Hervorragendes Aktivkohlematerial
- Geringer Druckabfall Optimaler interner Strömungsweg
- Hohe Zuverlässigkeit Das robuste Design des QDT und die strenge Qualitätskontrolle des Aktivkohlefilters optimieren die Zuverlässigkeit des Filters.
- Lange Wartungsintervalle Die hohe Menge an Aktivkohle sorgt für eine lange Lebensdauer, selbst unter sehr rauen Arbeitsbedingungen.

Optionen

- Ölindikator sorgt für reine Druckluft.
- $\bullet~$ Wandmontages atz für eine einfache Installation (20 bis 185 l/s)
- Hochleistungsbefüllung für extreme Ölbelastung (425–1800 l/s).
- PDp+-Nachfilter inklusive Verbindungsrohr (425–1800 l/s).

Leistung

	QDT
Fremdstoffe	Öldämpfe
Testmethode	ISO 8573-5:2001, ISO 12500-2:2007
Maximaler Restölgehalt (mg/m³)*	0,003
Durchschnittlicher Druckabfall, trocken (mbar)	125 (QDT 20-310) 72 (QDT 425-1800)
Elementwechsel	Nach 4.000 Betriebsstunden oder nach einem Jahr (bis QDT 310) Nach 8.000 Betriebsstunden oder nach einem Jahr (ab QDT 425) Nach 12.000 Betriebsstunden oder nach einem Jahr (Hochleistungsoption)
Vorzuschalten	Wasserabscheidung UD+ oder DD+/PD+ Trockner

^{*} Hinter UD+ oder DD+/PD+.

QDT 20-310

QDT 425-1800

Zertifizierung

ISO 8573-5:2001

Größen und Abmessungen

		****	Anschlüsse									
Filtergröße	Nennka	apazität	G oder NPT	A			В	(2	Gewicht		
	l/s	cfm	Zoll	mm Zoll		mm	mm Zoll		Zoll	kg	lbs	
20	20	42	1/2	490	19	223	9	190	7	7	22	
45	45	95	1	715	28	223	9	190	7	15	33	
60	60	127	1	840	33	223	9	190	7	18	40	
95	95	210	1	715	28	387	15	190	7	29	64	
125	125	265	1 1/2	840	33	387	15	190	7	34	75	
150	150	318	1 1/2	715	28	551	22	190	7	42	93	
185	185	392	1 1/2	840	33	551	22	190	7	50	110	
245	245	519	1 1/2	840	33	715	28	190	7	67	148	
310	310	657	1 1/2	840	33	879	35	190	7	84	185	
425	425	901	DN 80 3"	2148	85	710	28	600	24	264	581	
550	550	1165	DN 80 3"	2190	86	710	28	670	26	302	664	
850	850	1801	DN 100/4"	2320	91	724	29	805	32	391	860	
1100	1100	2331	DN 100/4"	2450	97	934	37	820	32	602	1324	
1800	1800	3814	DN 150/6"	2612	103	1046	41	980	39	882	1940	

Korrekturfaktoren

Für andere Drucklufteinlasstemperaturen ist die Filterkapazität durch die folgenden Korrekturfaktoren (Kt) zu dividieren:

Einlasstemperatur °C	10	15	20	25	30	35	40	45	50	55	60	65	70*	75*	80*
Einlasstemperatur °F	50	59	68	77	96	95	104	113	122	131	140	149	158	167	176
Korrekturfaktor ölfrei	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Korrekturfaktor ölgeschmiert	1	1	1	1	1	1	1,2	1,5	1,7	2,1	2,4	3	3,5	4,1	4,9

^{*} Nur für QDT mit Flansch.

Für andere Druckluft-Einlassdrücke ist die Filterkapazität mit den folgenden Korrekturfaktoren (Kp) zu multiplizieren:

Einlassdruck (bar)	3	4	5	6	7	8	9	10	11	12	13
Einlassdruck (psi)	44	58	73	87	102	116	131	145	160	174	193
Korrekturfaktor	0,57	0,77	0,83	1	1	1	1	1,05	1,05	1,11	1,18

UD⁺ und QDT: das Siegerteam

Die Atlas Copco-Filterzüge UD+ bis QDT erfüllen die Vorgaben der Druckluftreinheitsklasse 1 in puncto Gesamtölgehalt nach ISO 8573-1:2010 bei einer typischen Druckluftanwendung:

UD+	QDT
Abscheidung von Ölflüssigkeit und Öl-Aerosol	Öldampfabscheidung
Garantiert 0,0009 mg/m³ Aerosol und Flüssigkeit	Garantiert 0,003 mg/m³ Dampf
40 % weniger Druckabfall als bei DD+/PD+	65 % weniger Druckabfall als beim bisherigen QDT
50 % weniger Stellfläche	Viel kompakter als Behältersysteme

Zertifizierte Filterzüge

Mehrstufenfilter	Konstante Reinheitsklasse gemäß ISO 8573-1:2010	Zertifiziert
UD+ – QDT – DDp+	[2:-:1]	ja
UD+ - QDT - DDp+ PDp+	[15:1]	ja

14 – Druckluftfilter von Atlas Copco — Druckluftfilter von Atlas Copco – D

SFA-Serie

Silikonfreie Entfernung von Öl-Aerosolen, Stäuben und Öldämpfen

Hervorragende Druckluftreinheit ist eine Voraussetzung für den Schutz Ihrer Geräte und Endprodukte. Unsere silikonfreien SFA-Filter verhindern effizient, dass trockener und nasser Staub, Partikel, Öl-Aerosole und Wassertröpfchen in Ihr Druckluftsystem eindringen. Die SFA-Serie wird nach den hohen Standards für silikonfreie Geräte hergestellt und behandelt und wurde vom Fraunhofer-Institut als garantiert silikonfrei zertifiziert.

Ihre Vorteile:

- Maximale Kontaminantenentfernung Abscheidung von trockenen und feuchten Stäuben, Partikeln, Öl-Aerosolen und Wassertröpfchen mit hocheffizienten Glasfaser- und Vliesmedien
- Erhebliche Energieeinsparungen und limitierte **Systembetriebskosten** – Optimales Design und Filtermedien sorgen für geringe Druckverluste.
- Hohe Zuverlässigkeit Edelstahlkerne, doppelte O-Ringe, mit Epoxidharz abgedichtete Kappen und Filtergehäuse mit Korrosionsschutzbeschichtung
- Einfache Wartung Außenrippen an Gewindegehäuse und Aufsteckelementen
- Überwachung des Energieverbrauchs Druckdifferenzanzeige (Anzeige für 7 bis 25 l/s, Manometer für 45 bis 630 l/s optional)

Optionen

Filteranschlusssatz (7 bis 630 l/s) Wandmontagesatz (7 bis 630 l/s) Schnellkupplung (nur DD+ und PD+) Verlustfreier elektronischer Kondensatableiter (nur DD+ und PD+) Spannungsfreier Kontakt im Differenzdruckmesser (nicht beim QD+)

Zertifizierung

Lackverträglichkeitszertifikat (Fraunhofer-Institut)

Größen und Abmessungen

UD+, DDp+, Nennkapa- PDp+, QD+ zität		Referenz- druck		Maximal- druck		Anso	Anschlüsse		Abmessungen						Freiraum für Filterpatro- nenwechsel		vicht	
										Α		В			D			
	l/s	cfm	bar(e)	psig	bar(e)	psig	G	NPT	mm	Zoll	mm	Zoll	mm	Zoll	mm	Zoll	kg	lbs
7+	7	15	7	102	16	232	G 1/2	NPT 1/2	106	4,17	90	3,54	311,6	12,3	90	3,54	1,18	2,60
15+	15	32	7	102	16	232	G 1/2	NPT 1/2	106	4,17	90	3,54	311,6	12,3	90	3,54	1,24	2,73
25+	25	53	7	102	16	232	G 1/2	NPT 1/2	106	4,17	90	3,54	364,1	14,3	90,5	3,56	1,45	3,20
45+	45	95	7	102	16	232	G 3/4	NPT 3/4	135	5,31	110	4,33	432,6	17,0	110	4,33	2,35	5,18
75+	75	159	7	102	16	232	G 1	NPT 1	135	5,31	110	4,33	517,6	20,4	110	4,33	2,8	6,17
110+	110	233	7	102	16	232	G 1 1/2	NPT 1 1/2	175	6,89	143	5,63	549,1	21,6	130,5	5,14	5,4	11,91
145+	145	307	7	102	16	232	G 1 1/2	NPT 1 1/2	175	6,89	143	5,63	619,1	24,4	130,5	5,14	5,93	13,08
180+	180	381	7	102	16	232	G 1 1/2	NPT 1 1/2	175	6,89	143	5,63	689,1	27,1	130,5	5,14	6,45	14,22
240+	240	509	7	102	16	232	G 2	NPT 2	222	8,74	171	6,73	719,6	28,3	175	6,89	9,54	21,04
200.	200	636	7	102	16	232	G 2	NPT 2	222	0.74	474	6.73	042.6	22.0	175	6.00	10,71	23,62
300+	300	636	/	102	16	232	G 2 1/2	NPT 2 1/2	222	8,74	171	6,73	812,6	32,0	1/5	6,89	10,43	23,00
360+	360	763	7	102	16	232	G 2 1/2	NPT 2 1/2	222	8,74	171	6,73	812,7	32,0	175	6,89	10,2	22,49
430+	430	911	7	102	16	232	G 3	NPT 3	250	9,84	191	7,52	917,2	36,1	200,5	7,89	13,98	30,83
525+	525	1112	7	102	16	232	G 3	NPT 3	250	9,84	191	7,52	1033,2	40,7	200,5	7,89	15,32	33,78
630+	630	1335	7	102	16	232	G 3	NPT 3	250	9,84	191	7,52	1271,2	50,0	200,5	7,89	19,24	42,42

^{*} Nennbetriebsdruck: 7 bar(q)(e)/102 psiq; Temperatur: 20 °C/68 °F ** Kein inPASS-Modell für die SFA-Serie verfügbar.

Filtergröße	Nonnk	Nennkapazität		Referenzdruck		Maximaldruck					Gewicht				
riiteigiobe	Neillik			Zuruck	IVIAAIIII	aluluck	Anschlüsse	,	4	E	3	C	*	Gev	viciit
Geflanscht	l/s	cfm	bar (g)	psig	bar(e)	psig		mm	Zoll	mm	Zoll	mm	Zoll	kg	lbs
480+	480	1017	7	102	16	232	DN 80	370	15	316	12	1295	51	76	168
630+	630	1335	7	102	16	232	DN 80	370	15	316	12	1295	51	78	172
970+	970	2055	7	102	16	232	DN 100	510	20	451	18	1360	54	141	311
1260+	1260	2670	7	102	16	232	DN 100	510	20	451	18	1360	54	143	315
1600+	1600	3390	7	102	16	232	DN 150	620	24	506	20	1480	58	210	463
2100+	2100	4450	7	102	16	232	DN 150	640	25	541	21	1555	61	176	388
2500+	2500	5297	7	102	16	232	DN 150	640	25	541	21	1555	61	178	392
3000+	3000	6357	7	102	16	232	DN 200	820	32	701	28	1745	69	420	926
3500+	3500	7416	7	102	16	232	DN 200	820	32	701	28	1745	69	424	935
4000+	4000	8476	7	102	16	232	DN 200	820	32	701	28	1745	69	428	944
5000+	5000	10594	7	102	16	232	DN 200	820	32	701	28	1745	69	432	952
6000+	6000	12713	7	102	16	232	DN 250	920	36	815	32	2085	82	671	1479
7000+	7000	14832	7	102	16	232	DN 250	920	36	815	32	2085	82	679	1497
8000+	8000	16951	7	102	16	232	DN 300	1040	41	930	37	2070	81	896	1975
9000+	9000	19070	7	102	16	232	DN 300	1040	41	930	37	2070	81	900	1984

^{* +60} mm/2,36 Zoll für Einheiten mit elektronischem Kondensatableiter und +70 mm/2,76 Zoll für mechanischen Kondensatableiter mit Schwimmer

Baureihe WSD

Hocheffiziente Wasserabscheider

Der Wasserabscheider von Atlas Copco verhindert, dass sich Kondenswasser in Ihrem Druckluftsystem ansammelt. Der Wasserabscheider ist bei den Nachkühlern von Atlas Copco serienmäßig vorhanden und kann zudem an jedem Punkt in Ihrem System eingebaut werden.

Ihre Vorteile:

- Ein zuverlässiges Druckluftsystem Der korrosionsbeständige Kondensatableiter verhindert, dass sich Kondenswasser in Ihrer Druckluftanlage ansammelt.
- Minimale Wartung Der Wasserabscheider hat keine beweglichen Teile und ist daher wartungsfrei. Er ist mit einem automatischen und einem manuellen Kondensatableiter ausgestattet.
- Energieeinsparungen Die intelligente Ableitungsfunktion überwacht Kondensatansammlungen mit Füllstandssensoren. Das Kondensat wird nur dann abgeleitet, wenn es erforderlich ist, um einen unnötigen Einsatz von Druckluft zu vermeiden.
- Flexible Installation Atlas Copco-Wasserabscheider können an jedem Punkt Ihres Druckluftnetzes installiert werden.

Größen und Abmessungen

Тур	Loistuna	gsbereich Referenzdruck			Maximaldruck Anschlüsse			Abmessungen							Gewicht	
	Leistung	spereich	Referenzuruck		Widaimaididek		Anseniusse		A		В		С		dewicht	
	l/s	cfm	bar(e)	psi	bar(e)	psi	G	NPT	mm	Zoll	mm	Zoll	mm	Zoll	kg	lbs
WSD 25+	7–25	15–53	7	102	16	232	G 1/2	NPT 1/2	106	4,2	90	3,5	353	13,9	1,1	2,4
WSD 75+	26-75	54–159	7	102	16	232	G 1	NPT 1	135	5,3	110	4,3	453	17,8	2,1	4,6
WSD 180+	76–180	160–381	7	102	16	232	G 1 1/2	NPT 1 1/2	175	6,9	143	5,6	592	23,3	4,32	9,5
WSD 300+	181–300	382-636	7	102	16	232	G 2	NPT 2	222	8,7	171	6,7	805	31,7	7,74	17,1
WSD 360+	181–360	382–763	7	102	16	232	G 2	NPT 2	222	8,7	171	6,7	805	31,7	7,74	17,1
WSD 800+	361-800	764–1695	7	102	16	232	G 3	NPT 3	250	9,8	191	7,5	1028	40,5	11,3	24,9

*Der Blindflansch muss auf diesen Durchmesser gebracht werden.

Druckluftfilter von Atlas Copco – 17 16 – Druckluftfilter von Atlas Copco

H-Serie

Garantierte Druckluftreinheit bis 350 bar

Hochdruckfilter reduzieren effizient Öl-Aerosole, Staub und Nassstaub, Partikel, Wassertröpfchen und Öldampf in Ihrem Druckluftstrom, um Ihre Investitionen, Geräte und Prozesse zu schützen. Unsere innovativen Hochdruckfilter liefern trotz des günstigen Anschaffungspreises eine hervorragende Druckluftreinheit und entsprechen den steigenden Qualitätsanforderungen bei Betriebsdrücken von bis 350 bar. Alle Hochdruckfiltergehäuse werden hydraulisch getestet, um einen sicheren und zuverlässigen Betrieb zu gewährleisten. Jedem Filter liegt ein Druckprüfungszertifikat bei.

- Maximale Kontaminantenentfernung (trockener und nasser Staub, Partikel, Öl-Aerosole und Wassertröpfchen) -Hocheffiziente Glasfaser- und Vliesmedien
- Erhebliche Energieeinsparungen und limitierte **Systembetriebskosten** – Optimales Design und Filtermedien sorgen für geringe Druckverluste
- Hohe Zuverlässigkeit Starke und langlebige Edelstahlkerne, doppelte O-Ringe, mit Epoxidharz abgedichtete Kappen und Filtergehäuse mit Korrosionsschutzbeschichtung

Anwendungen

- Chemische Industrie
- Nahrungsmittel- und Getränkeindustrie
- Fertigung
- Militär
- Öl und Gas

Leistung

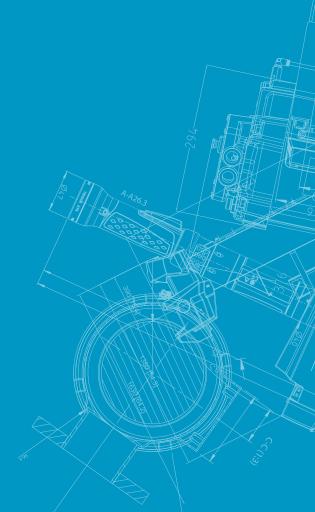
	DDHp+	PDHp+	DDH+	PDH+	QDH+
Fremdstoffe	Trocken	e Stäube	Öl-Aerosole/	nasse Stäube	Öldämpfe
Testmethode		3-4:2019 0-3:2009		3-2:2018 0-1:2007	ISO 8573-5:2001
Maximaler Restölgehalt (mg/m³)	-	-	0,08*	0,007*	0,003**
Filterwirkungsgrad bei Feststoffen (% bei MPPS)	99,92 (0,1)	99,98 (0,06)	Entfällt	Entfällt	Entfällt
ISO-Klasse 8573-1	[2:-:-]	[1:-:-]	[2:-:3]	[1:-:2]	[3:-:1]
Druckverlust trocken (mbar)	85	100	Entfällt	Entfällt	140
Druckverlust nass (mbar)	Entfällt	Entfällt	180	215	Entfällt
Elementwechsel		tunden, nach 1 Jahr bar Druckabfall	Nach 4.000 Betriebsstu	ınden oder nach 1 Jahr	Nach 1.000 Betriebsstun- den oder nach 1 Jahr
Vorzuschalten	Entfällt	DDHp+	Entfällt	DDH+	DDH+/PDH+

Vor dem Filter muss immer eine Wasserabscheidung installiert sein. Die Wasserabscheidung wird in der Hochdruckleitung nicht benötigt, wenn in der Niederdruckleitung ein ausreichend niedriger Drucktaupunkt herrscht (z. B. Stickstoffgenerator, Niederdruckleitung mit Adsorptionstrockner).

Größen und Abmessungen

Filtergröße		Nonnkanaziti	i+	Anschlüsse			Abmes	sungen			Con	vicht
DDH, DDHp, PDH,		Nennkapazitä		Anschlusse	,	4	ı	В		С	Gev	vicnt
PDHp, QDH	m³/h	l/s	cfm	Zoll	mm	Zoll	mm	Zoll	mm	Zoll	kg	lbs
20 bar Aluminium												
10+	36	10	21	1/2	106	4,2	90	3,5	312	12,3	1,2	2,6
25+	90	25	53	1/2	106	4,2	90	3,5	312	12,3	1,3	2,8
40+	144	40	85	1/2	106	4,2	90	3,5	364	14,3	1,4	3,2
75+	270	75	159	3/4	135	5,3	110	4,3	433	17	2,4	5,4
125+	450	125	265	1	135	5,3	110	4,3	518	20,4	2,9	6,3
185+	666	185	392	1 1/2	175	6,9	143	5,6	549	21,6	5,1	11,2
245+	882	245	519	1 1/2	175	6,9	143	5,6	619	24,4	5,6	12,3
305+	1098	305	646	1 1/2	175	6,9	143	5,6	689	27,1	6,1	13,5
405+	1458	405	858	2	222	8,7	171	6,7	720	28,3	9,3	20,6
505+	1818	505	1070	2	222	8,7	171	6,7	813	32	10,4	22,9
605+	2.178	605	1282	2 1/2	222	8,7	171	6,7	813	32	10,2	22,5
50 bar Aluminium												
160+	160	44	94	1/4	63	2,5	63	2,5	150	5,9	0,3	0,7
250+	250	69	147	3/8	63	2,5	63	2,5	190	7,5	0,3	0,7
450+	450	125	265	1/2	114	4,5	114	4,5	305	12,0	2,6	5,7
550+	550	153	324	3/4	114	4,5	114	4,5	305	12,0	2,6	5,7
835+	835	232	491	1	114	4,5	114	4,5	395	15,6	3,3	7,3
1250+	1250	347	736	1 1/2	146	5,8	146	5,8	435	17,1	7,5	16,5
1725+	1725	479	1015	1 1/2	146	5,8	146	5,8	435	17,1	7,5	16,5
1925+	1925	535	1133	2	146	5,8	146	5,8	435	17,1	7,5	16,5
3200+	3200	889	1883	2	146	5,8	146	5,8	635	25,0	10	22,0
50 bar Edelstahl												
100+	100	28	59	1/4	85	3,4	85	3,4	202	8,0	1,7	3,7
200+	200	56	118	3/8	85	3,4	85	3,4	227	8,9	2	4,4
340+	340	94	200	1/2	85	3,4	85	3,4	257	10,1	2,2	4,8
500+	500	139	294	3/4	110	4,3	110	4,3	270	10,6	4	8,8
1000+	1000	278	589	1	110	4,3	110	4,3	422	16,6	5	11,0
1700+	1700	472	1000	1 1/2	150	5,9	150	5,9	517	20,4	15	33,1
2040+	2040	567	1200	2	150	5,9	150	5,9	517	20,4	15	33,1
3400+	3400	944	2000	2	150	5,9	150	5,9	817	32,2	21	46,3
100 bar Edelstahl												
100+	100	28	59	1/4	65	2,6	65	2,6	135	5,3	3,2	7,1
315+	315	88	185	1/2	65	2,6	65	2,6	250	9,8	5,6	12,3
460+	460	128	271	3/4	88	3,5	88	3,5	275	10,8	6,1	13,4
680+	680	189	400	1	135	5,3	135	5,3	265	10,4	10,5	23,1
1200+	1200	333	706	1	135	5,3	135	5,3	480	18,9	14,7	32,4
1700+	1700	472	1000	1 1/2	150	5,9	150	5,9	525	20,7	22	48,5
3400+	3400	944	2000	2	150	5,9	150	5,9	815	32,1	28	61,7
350 bar Edelstahl												
48+	48	13	28	1/4	41	1,6	41	1,6	103	4,0	1,6	3,5
111+	111	31	65	1/4	65	2,6	65	2,6	135	5,3	3,2	7,1
255+	255	71	150	1/2	88,5	3,5	88,5	3,5	210	8,2	5,6	12,3
510+	510	142	300	3/4	88,5	3,5	88,5	3,5	280	10,9	6,1	13,4
750+	750	208	441	1	150	5,9	150	5,9	330	12,9	14,5	32,0
1330+	1330	369	783	1	150	5,9	150	5,9	480	18,7	17,4	38,3

Korrekturfaktoren


20 bar Aluminium										
Betriebsdruck	bar(g)	-	7	8	10	12	14	16	18	20
betriebsuruck	psig	-	102	116	145	174	203	232	261	290
Korrekturfaktor			0,59	0,63	0,71	0,78	0,84	0,9	0,95	1
50 bar Aluminium und I	Edelstahl									
Betriebsdruck	bar(g)	4	6	8	10	15	20	30	40	50
betriebsuruck	psig	58	87	116	145	218	290	435	581	72
Korrekturfaktor		0,14	0,22	0,28	0,34	0,47	0,56	0,7	0,85	1
100 bar Edelstahl										
Betriebsdruck	bar(g)	20	30	40	50	60	70	80	90	10
betriebsuruck	psig	290	435	581	726	871	1016	1161	1306	145
Korrekturfaktor		0,45	0,57	0,68	0,8	0,84	0,88	0,92	0,96	1
350 bar Edelstahl										
Betriebsdruck	bar(g)	-	-	50	100	150	200	250	300	35
betriebsuruck	psig	-	-	726	1451	2177	2903	3628	4354	508
Korrekturfaktor				0,73	0,78	0,82	0,87	0,91	0,96	1

Druckluftfilter von Atlas Copco – 19 18 – Druckluftfilter von Atlas Copco

^{*} Ölkonzentration am Einlass = 10 mg/m³. Öl = Öl-Aerosol und -Flüssigkeit. ** Nach DD(+)/PD(+) mit 10 mg/m³ Ölgehalt in der Einlassluft.

